If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+9x-9=0
a = 40; b = 9; c = -9;
Δ = b2-4ac
Δ = 92-4·40·(-9)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-39}{2*40}=\frac{-48}{80} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+39}{2*40}=\frac{30}{80} =3/8 $
| 2(5-8k)-13=9(1-k) | | 5p−9=2p+12. | | 2/3)-(3x/4)=(1/2)(2x-1) | | 3250-m=1500+2m-10000 | | (X^2-9)^2-x^2+10=1 | | X+3(2x-4))=-19 | | -8^2+46x-30=0 | | 167=7x-4(6x+5) | | 2/3(x+3)=1/3(x+5) | | 4x-3÷2=5 | | 5x+8−7x=−4x+1 | | 8x+14-7x=-5-12 | | 19x+130=567 | | x2+8x-28=0 | | A^2+(a/3)=3 | | -4(u+2)=7u-2+2(2u+3) | | 3x+9-6(x+1)=5x+6 | | 5x-3=7x+17 | | 1/(x-3)=-2 | | n+1/3-5/3=-14/3 | | -11=a/7 | | 3x+9-6(x-+1)=5x+6 | | 91y=9(10y+36) | | 1/4n+7n-2=5/4 | | X-10=3x+2(x-1) | | 8x-4x+10=30 | | 3-(2r+5)=-12 | | y^2+12y=60 | | 3/4(48-16x)=4(4+2x)= | | 5/6x-3/6x+12=24 | | 12-n2=-34 | | 9x2+-42x+49=0 |